

Specification

Wellsfill - Monophasic filler

Stable & High Elasticity despite low chemical deformation Excellent Safety, Improved Syringeability and Cohesion

wellsfill fine

wellsfill deep

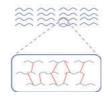
wellsfill volume

	Wellsfill fine	Wellsfill Deep	Wellsfill Volume
Cross-linking Rate	•00	••0	• • •
Gel Type			
HA Concentration	19 mg/mL	20 mg/mL	23 mg/mL
G' value	200	300	500
Phase angle	12 ~ 13	9 ~ 10	6~7
Lidocaine	0.3%	0.3%	0.3%
Needle	30G½, 2EA	27G½, 30G ½	27G½, 2EA
Injection depth	Superficial dermis	Mid, deep dermis	Subcutaneous dermis

Stable & High Elasticity despite low chemical deformation Excellent Safety, Improved Syringeability and Cohesion

Technology

Complex Cross-linking Technology (Chemical & Physical Cross-linking) is used in producing Wellsfill. It is a formulation that maximizes the advantages of existing biphasic & monophasic fillers, and the chemical modification rate (degree of modification, MOD) is low. Safe, excellent cohesive force, high elasticity value and elastic modulus (low phase angle), high satisfaction in use.


Supply of customized and differentiated filler lines through differentiated bead formulations as well as existing formulations.

I Traditional Cross-linking

Extensive modification of HA

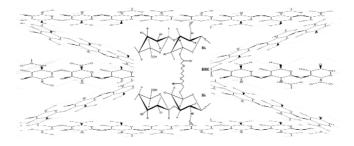
Side effects due to high chemical cross-linking

Decreased duration due to short chain bonding

I CCT Cross-linking

Minimal modification of HA to stabilize the natural linking

Reagent


HΑ

Minimize side effects due to minimal chemical crosslinking

Increase durability by maintaining the long chain of hyaluronic acid

Complex Cross-linking Technology
Controlled particle size
Outstanding lifting capacity
Minimal modification

Stage 1: Physical and chemical crosslinking process (P&C crosslink)

Reaction to minimize molecular weight reduction of HA Chain

Reaction process using high concentration HA solution, low temperature, and low chemical crosslinking agent

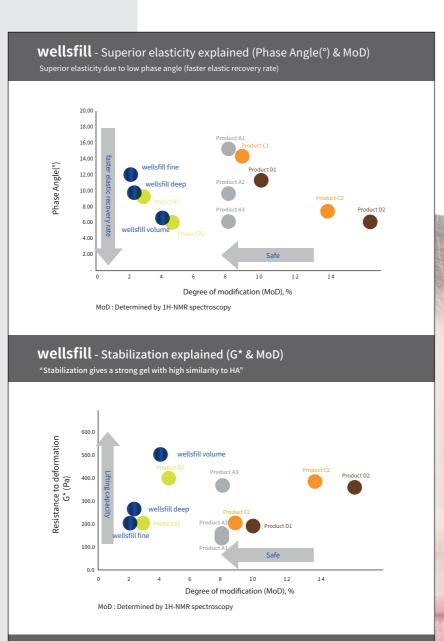
Maximization of physical properties through optimal reaction time

Stage 2 : Purification process (S&D washing)

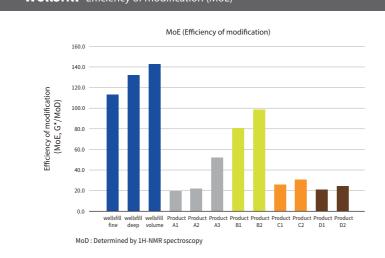
Stage 3: Particulation process (Optimal sizing)

Stage 4 : Sterilization process (Optimal autoclave)

Optimized purification process through repetition of soaking and dehydration processes to increase the cohesiveness of the gel


Optimal homogeneous particulation process that enables injection while increasing the cohesive force of the gel

Block contaminants and optimize physical properties through optimal sterilization time



Monophasic filler

wellsfill -Efficiency of modification (MoE)

Low crosslinking agent

High cohesiveness

High Elasticity

Longer Duration

Advanced Safety

Natural Look